

Improved GAU-8/A Ammunition

Presented by
Mr. Brian Tasson of Alliant Techsystems, Inc.
&
Mr. John Burnett of Arrow Tech Associates

Outline

- Project Background
- Ballistically Matched 30mm Family
- Tungsten Armor Piercing (AP) Projectile
 - Design Constraints
 - Approach
 - Results
- Conclusion

Project Background

- Multiyear ATK funded project started in AFY00 to develop an improved family of GAU-8/A ammunition (API, HEI & TP)
- Majority of work addressed replacing DU penetrator in PGU-14 cartridge with tungsten material
 - Analytical work
 - Hardware fabrication
 - Testing
 - Updated analysis
- HEI (PGU-13) cartridge addressed as outgrowth of advanced HEI cartridge design effort

Design Constraints

- All three rounds (AP, TP and HEI) ballistically matched
- Current interface control drawing (ICD) requirements apply
- Current impulse limit applies
 - 117 lb-sec
 - 0.935 lb (424gm) maximum allowable projectile weight
- Gyroscopic stability at worst case launch greater than 1.00
 - Gyroscopic/Dynamic stability for flight duration
- Dispersion requirements minimize jump sensitivity

Design Constraints

- Maintain current propulsion and ignition system
 - No new propellant development
 - M36 primer
 - Black powder flashtube
- Maintain current aluminum cartridge case
- All designs compatible with current production/LAP equipment and processes
- Typical design dichotomy
 - change as little as possible (i.e. nothing) to keep design risk low and minimize qualification effort yet improve the product

Ballistically Matched Family of Ammunition

- All three rounds (AP, HEI & TP) defined that are ballistically matched
- Armor Piercing (AP) using a tungsten core
 - Penetration testing confirms performance levels
- High Explosive Incendiary (HEI) using an improved mechanical fuze
 - Low drag version of FMU-151 fuze configured
 - FMU-151 fuze has these advantages over the M505 fuze
 - Meets dual safety environments of MIL-STD-1316
 - Better graze and low velocity impact (long range) function than M505
- Target Practice (TP)
 - Essentially no changes to current PGU-15 design

Ballistically Matched Family of Ammunition

Tungsten Armor Piercing Projectile

High Explosive Incendiary Projectile

Target Practice Projectile

Ballistically Matched Family of Ammunition

- •Initial designs show good ballistic match
 - Similar time of flight and drop
 - Tuning of designs will provide final match

Tungsten AP - Design Goal

Meet the current GAU-8/A API performance requirements using a tungsten core instead of the current DU material

Tungsten AP - Key Performance Parameters

Debulleting load

Gyroscopic & Dynamic Stability

Muzzle velocity

Structural integrity

• Chamber pressure (maximum)

Penetration

Action time

Mass

Accuracy

-L/D

Tungsten AP - Approach for Improved Performance

- •Extensive computer simulations conducted to identify improved configurations
 - Penetration efficiency
 - Increased penetrator mass and L/D
 - Improved external ballistic effects Lower Deceleration
 - Reduced drag
 - Increased weight
 - Increased cartridge impulse to ICD limits
 - Current ATK design under allowable impulse level

Tungsten AP - Projectile Comparison

Tungsten AP - Candidate Core Designs

Tungsten AP - Matrix of Candidates

Tungsten AP Stability Trends

Tungsten AP V50 Trends

Tungsten AP Aerodynamic Jump Trends

Tungsten AP Air-to-Ground Error

Tungsten AP Penetration Results vs. Current PGU-14

Tungsten AP – Ballistic Comparisons

- •Lower Drag and Ballistic Coefficient improves ballistic performance versus DU at extended ranges
 - Lower time of flight
 - Increased strike velocity

Tungsten AP – On Target Performance

- •Slightly improved damage factor due to higher on target impact velocity
 - -Tungsten AP versus PGU-14

- •No difference in number of expected hits
 - -Tungsten AP versus PGU-14

Improved GAU – 8/A Ammunition - Conclusions

- A ballistically matched family of GAU-8/A ammunition has been defined
- A Tungsten API Alternative to DU has been demonstrated
 - Tactical performance is equivalent to the current DU Round
- An improved HEI has been developed
 - Higher performance fuze
 - Improved safety
 - Improved graze and low velocity impact function
- Rounds are essentially ready for fielding now

